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Abstract

I will argue that hierarchical representation
and hierarchical computation are fundamental
principles in biological vision systems.  This
fits with the theory known as compositionality,
whereby human cognition is modeled as a pro-
cess of assembling constituents into restricted com-
positions. The compositions themselves can be
used and reused as constituents in a variety of
still higher-level constructions, creating a hierar-
chy of part/object relationships. The formulation
of compositionality begins with Chomsky’s formal
grammars. [ will propose some extensions, and I
will show how to fit these with probability distri-
butions. I will explore an application to machine
vision.

1 Compositionality

Compositionality refers to the evident ability of hu-
mans to represent entities as hierarchies of parts, with
these parts themselves being meaningful entities, and
being reusable in a near-infinite assortment of mean-
ingful combinations. Compositionality is generally con-
sidered to be fundamental to language (Chomsky [5],
[6]), but many believe, as do we, that it is fundamen-
tal to all of cognition. Objects and scenes, for exam-
ple, decompose naturally into a hierarchy of meaningful
and generic parts. Furthermore, compositions help us
to identify parts unambiguously: It is often the case
that components can not be correctly interpreted in the
absence of the contextual constraints imposed by their
incorporation into a larger whole, i.e. a composition.
Indeed, such compositions are sometimes called “higher-
level constraints.”

It has been argued that artificial neural networks, by
virtue of their ability to learn by example, reasonably ap-
proximate the workings of natural neural networks. But
as pointed out by Foddor and Pylyshyn ([13]), these arti-
ficial networks are not compositional, and therefore they
fail to mimic a basic attribute of human cognition. (See,
however, von der Malsburg [35], Smolensky [34], Prince
and Smolensky [28], Bienenstock [2], Hummel and Bie-
derman [20], and Mjolsness [24] for efforts to address
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compositionality within a neural network framework.)

As early as 1812 Laplace discussed the compositional
nature of perception: In his Essay on Probability ([22]),
he remarks on one’s overwhelming preference to inter-
pret the string CONSTANTINOPLE as a single word,
rather than a collection of fourteen letters. In some
sense, it is “more probable” that the letters came to-
gether in the context of a known word than that they
found their placements by coincidence. Of course the
Gestalt psychologists were getting at very much the
same thing (cf. [9]), as are today’s cognitive scientists
studying modern compositionality (see, especially, the
work by Feldman [12], which connects closely with the
development here).

I will outline here, through a discussion of a particu-
lar application—on-line character recognition, a possible
formulation of the principle of compositionality. This is
taken from a more complete and rigorous account pro-
posed previously in [16] in collaboration with Zhiyi Chi
and Daniel Potter.

A primary goal is to make a contribution to machine
vision: We believe that this formulation can be a ba-
sis for building vision systems that systematically ex-
ploit contextual constraints, and thereby address the
many levels of ambiguity that arise in image interpre-
tation. Many others have taken a similar approach for
similar reasons-—see, for example, Narasimhan ([25]),
Shaw ([32]), Pavlidis ([26]), Fu ([15]), Biederman ([1]),
Grenander ([17]), and Casadei & Mitter ([4]).

2 Application to On-Line Char-
acter Recognition

The best introduction is perhaps by example. 1
will present here a more-or-less informal introduction
through a more-or-less simple (but nonetheless largely
unsolved) application: on-line upper-case character
recognition.

Figure 1 shows some simple images of the type that
we wish to interpret. Strokes and characters are drawn
on a pad with a stylus whose position is sampled at a
constant rate. The markings in Figure 1 represent the
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Figure 1: On-line images. Stylus position is sampled at
regular intervals. Sampled locations are indicated with
“+” symbol.
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locations of sampled points. Of course there is order
information, and this can be quite useful, but for the
purposes of this illustration the order information will
be ignored: The data is simply the collection of sampled
locations.

As a first step, we will need to develop hierarchical
representations for objects in the object library. The
library will certainly include the upper-case letters, but
in addition there are numerous other object types that
will emerge from the intermediate-level representations,
including, for example, “lines,” “arcs,” “T-junctions,”
and “L-junctions.”

It might be expected that compositional hierarchies
would be most conveniently defined via production rules
within a formal grammar. But to the contrary, it turns
out to be more convenient and more natural to come at
this from the other direction, which is to say via compo-
sition rules rather than productions. Composition rules
are syntactic rules under which entities are composed to
form composite entities, very much like the process of
unification in Unification Grammars ([33], [21]).

Recursive application of the composition rules defines
the set of recognizable objects. The process is initiated
with a “primitive” class of objects, which in this case
is the set of individual points at which the stylus could
be sampled. Let us suppose that the set of possible
sampled locations consists of M? points arranged on an
M x M grid. Let T be the subset of objects representing
these M? primitives (so that each t € T is a particular
location on the M x M grid).

A simple composition rule would allow two primitives
to be composed into a kind of mini-stroke, which we
might term a linelet: Given a radius r, two points, t;
and to, can join if their distance does not exceed r. See
Figure 2a.

What sort of compositions give rise to a straight line?
A straight line could be grown by adjoining a single
point (primitive) to either a linelet or to an already-
existing straight line. Let A be the linelet or the straight
line which is to be bound to the primitive. The object
A itself comprises a set of primitives (just two, in the
case of a linelet). Define e; and e to be two points that
achieve the maximum distance among pairs of points
in this set, and let this distance be d. Fix two posi-

Figure 2: Syntactic constraints for two points forming
a linelet (panel a) and a point joining a line to make a
larger line (panel b).

tive numbers w and I, and situate a rectangle of length
d+ 2] and width 2w symmetrically around the line seg-
ment joining e; and ey (refer to Figure 2b). Allow X to
bind to a primitive t provided that ¢ is contained in this
rectangle.

Composition rules can be added that allow two colin-
ear straight lines to bind to form a larger straight line, or
two straight lines to bind to form an L or a T junction.
Linelets can be combined with primitives to form arcs,
and arcs together with primitives, or arcs together with
arcs, can form larger arcs. Xiaohua Xing, while a stu-
dent in the Division of Applied Mathematics at Brown
University, and Dan Potter, as reported in his thesis
on Compositional Pattern Recognition ([27]), have each
run on-line character recognition experiments. Compo-
sitional hierarchies involving dozens of rules were con-
structed, giving rise to the twenty-six upper-case char-
acters as well as numerous intermediate object types, in-
cluding primitives, straight-lines, various junction types,
arcs, and so-on.

Any collection of composition rules together with the
set T' of primitives defines a set, or library, of objects,
Q. To make this precise it is necessary to interpret ob-
jects as trees in which the leaves are primitives, and in
which each non-leaf node is labeled with an object type
(linelet, line, etc.). The label of the tree itself (i.e. the
object type) is the label of its root node. If, for exam-
ple, the object arose from the rule straight line binds to
straight line to form straight line, then the root node and
each of its daughters would be labeled “straight line,”
and the remaining interior nodes would either be labeled
“straight line” or “linelet.” The library ) is the set of
trees such that for each non-terminal node n with label
[ there exists a composition rule under which the daugh-
ters of n can bind to form an object of type I. The set
T of primitives is viewed as a set of single-node objects:
TCO.

The set of objects is unimaginably large, even if we
were to restrict ourselves to composition rules for just
linelets and straight lines. Furthermore, given any col-
lection of primitives that can be interpreted as a partic-



ular object with label “I” (in other words, the primitives
constitute the terminal nodes of an object with label 1},
there will typically be a large number of distinct ob-
jects of the same type (same label) containing the same
primitives. Because of this, in formal language theory,
systems such as ours are termed “ambiguous.” This may
turn out to be a virtue: All of the many explanations
which share a common root-node label are essentially
equivalent, and therefore there are many computational
paths to what amounts to a “correct” solution. This
kind of redundancy may open the door to pruning, or
coarse-to-fine, or other heuristic search methods. (But
K.S. Fu, who pioneered syntactic pattern recognition,
would probably disagree: in a book on the subject ([14],
page 27) he writes: “In pattern description languages,
it is clear that ambiguity should be avoided; therefore,
to find a family of unambiguous grammars is a problem
of interest in this area.”)

Within this framework, an “interpretation” is the as-
signment of each element of an image (in the present
example, each primitive) to an object. One easy-
to-compute interpretation simply labels each sampled
point as a primitive; no aggregations, or compositions,
are offered. This of course is not what we are after. In
the left-hand panel of Figure 1, we would prefer to join
the seven nearly-colinear points in the upper left region
and label them, collectively, as a straight line segment.
The evident tendency of humans to manufacture such
compositions is of course the cornerstone of composi-
tionality. (See Feldman, [10] and [11], for recent work
making use of psychophysical and analytic tools to ex-
plore the aggregation process in human subjects.)

Aggregation is an instance of Occam’s Razor, and it
can be formulated rather conveniently using Rissanen’s
Minimum Description Length (MDL) Principle ([29]).
The idea is to encode, for example in a binary code,
each object hierarchy, as if it were to be transmitted
over a channel or stored on a disk. A “sensible” en-
coding would assign shorter codes to intuitively-succinet
descriptions, such as the description of the seven points
in terms of a straight line segment versus their descrip-
tion as individual and independent locations. There is
a more-or-less natural encoding induced by the hierar-
chical structure, and in this regard the use of composi-
tion rules instead of productions is a central feature of
the approach. In particular, each rule can be appended
with a formula for encoding the composition in terms of
the already-encoded components; the encoding scheme
is recursive. Let us put aside the general scheme and ex-
amine, instead, some specific instances based upon the
composition rules defined earlier.

We suppose that there are L object types (primitives,
linelets, straight lines, etc.) in our object library. For
simplicity, we will assign a uniform encoding to the dif-
ferent object types, meaning that we will use log,(L)

bits to indicate an object label. (Bit counts will usually
be fractions. These should be rounded, generally up-
ward, but it is easier and more clear to just work with
real numbers.) A specific instance of a primitive would
be most naturally encoded with 2log, (M) bits, indicat-
ing the values of each of the two coordinates. (Recall
that we are working on an M x M grid.) Thus a prim-
itive encoding involves log,(L) + 2log, (M) bits. Con-
sider now a linelet. The label, “linelet,” requires log, (L)
bits. Referring to Figure 2a, the “seed” point, 1, re-
quires 2log, (M) bits to specify (the label, “primitive,”
is now superfluous—linelets always consist of two prim-
itives), and tq, by virtue of its restriction relative to t;,
can be encoded with log, (7r?) bits (corresponding to—
approximately—mr? allowed lattice locations). Thus a
linelet is encoded with log, (L) + 2log, (M) + log, (7r?)
bits. There is a savings: coded separately, t; and t,
would require a total of 2log, (L) + 4log, (M) bits, and
nr? is of course substantially smaller than M2,

The encoding of straight lines proceeds similarly, but
in this case the labels of the constituents need to be
specified. The first constituent could be a linelet or
a line, and this specification will require one bit (still
a saving over the log,(L) bits associated with the un-
bound item). Similarly, if the first constituent is a line,
then an additional bit is required to specify whether
the second constituent is a primitive or itself a line. In
either case, the position of the second constituent is con-
strained by the location of the first constituent. Hence
there is a further savings over an independent encoding
of the constituents.

In principle, the encoding of lines is recursive: When
two straight lines are joined to form a straight line, the
code of the composite embeds the codes of the con-
stituents. Actually, however, a recursive form is dif-
ficult to construct. This is discussed further in [16],
both from the point of view of coding as well as a more
traditional probabilistic viewpoint. (Of course, the two
viewpoints are essentially equivalent if we adopt a Shan-
non code when given a probability distribution—see [8],
or take code lengths as log-probabilities when given a
code.) In any case, there are many details concern-
ing the existence and scope of codes (and/or probability
measures) satisfying such recursive relationships, exten-
sions to nonuniform encodings of labelings, and so on.
See [16]. Here we wish only to point out that com-
positional codes promote aggregation by assigning more
succinct codes to compositions than to constituents, and
that these codes give an explicit formula for evaluating
competing interpretations as may be associated with ei-
ther inconsistent aggregations or inconsistent labelings
of a common region.

Recall that an “interpretation” is the assignment of
each element of an image to an object. An optimal inter-
pretation is an assignment that achieves the minimum
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Figure 3: Examples of images interpreted by on-line
character recognition algorithm.

total description length. We have experimented with a
simple algorithm for computing an approximately op-
timal interpretation. Briefly, the algorithm proceeds
in two steps: In the first step, the observed primitives
are recursively aggregated under the composition rules.
This creates a large collection of labels, with many con-
tradictory and multiple coverings of the original image.
Usually some sort of pruning, based upon description
length, is used in order to maintain a manageable list
size. In the second step, a greedy algorithm chooses a
subset from this collection by choosing successively the
next best labeling (shortest description length) among
those not chosen, until the original image is entirely
labeled. The greedy algorithm is fast, and can be
restarted dozens or even hundreds of times, from dif-
ferent choices of the first label.

The algorithm is simple and easy to implement. There
can be no doubt that more sophisticated search strate-
gies will be needed for more complex applications.
Nonetheless, systems based on this approach have been
able to read overlapping and highly irregular characters,
as demonstrated in experiments by Xiaohua Xing (see
Figures 1 and 3) and by Dan Potter (see [27]).

More levels of composition can be included in the hier-
archy. For example, under more-or-less straightforward
composition rules, characters can be grouped to form
strings. At this point, an on-line dictionary can be used
to create thousands of virtual composition rules: strings
can be viewed as specific words, with a saving of label
bits accrued for each character. These high-level com-
positions can resolve ambiguities. In fact, many single-

character confusions are impossible to resolve in isola-
tion, but easily resolved in the context of words.

The idea of using description lengths is not new to ma-
chine vision. In one form or another the “MDL Princi-
ple” has been applied to image segmentation (cf. Leclerc
[23], Zhu and Yuille [36]), image restoration (cf. Saito
[30]), motion analysis (cf. Schweitzer [31], Gu et al.
[18]), and image interpretation (cf. Canning [3], Hinton
et al. [19]). Our approach is in the same spirit as these,
although the emphasis is on compositionality, very much
along the lines proposed by Cooper (see [7]): We use de-
scription lengths to promote hierarchical aggregations of
parts.

The MDL procedure is exactly Bayesian MAP: use
code lengths as “energies” and use the associated Gibbs
distribution as the prior. Among other advantages (see
[16]), the Bayesian viewpoint suggests the possibility
of estimating (learning) composition costs. Consider,
for example, the joining of two lines to form an L-
junction. In principle, the distribution on the relations
between end points of the two component lines could
be estimated. The uniform encoding used in the exam-
ples discussed here could then be replaced by a Shan-
non code associated with the estimated distribution—
atypical joinings would then be appropriately penalized
with long code words.

This opens the door to building parametric, but more-
or-less generic, composition rules, and the possibility
of building systems capable of learning, from example,
hierarchical object and scene representations.
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